Friday, August 12, 2016

Chemical Weapon

Links:

Chemical Weapon
Multiple Responses:
1.
A chemical weapon (CW) is a munition that uses chemicals formulated to inflict death or harm on human beings. The Organization for the Prohibition of Chemical Weapons (OPCW) states:

The term chemical weapon may also be applied to any toxic chemical or its precursor that can cause death, injury, temporary incapacitation or sensory irritation through its chemical action. Munitions or other delivery devices designed to deliver chemical weapons, whether filled or unfilled, are also considered weapons themselves.

They are classified as weapons of mass destruction (WMDs), though they are distinct from nuclear weapons, biological weapons (diseases), and radiological weapons (which use radioactive decay of elements). All may be used in warfare known by the military acronym NBC, for nuclear, biological, and chemical warfare. Weapons of mass destruction are distinct from conventional weapons, which are primarily effective due to their explosive, kinetic, or incendiary potential. Chemical weapons can be widely dispersed in gas, liquid and solid forms, and may easily afflict others than the intended targets. Nerve gas, tear gas and pepper spray are three modern examples.

Lethal, unitary, chemical agents and munitions are extremely volatile and they constitute a class of hazardous chemical weapons that are now being stockpiled by many nations. (Unitary agents are effective on their own and require no mixing with other agents.) The most dangerous of these are nerve agents GA, GB, GD, and VX, and vesicant (blister) agents, which are formulations of sulfur mustard such as H, HT, and HD. All are liquids at normal room temperature, but become gaseous when released. Widely used during the First World War, the effects of so-called mustard gas, phosgene gas and others caused lung searing, blindness, death and maiming.

Pepper spray is of common use today. It is potentially lethal. There are no recent records of pepper spray being used in war, despite the fact that it inflicts fewer injuries and side-effects compared with impact and explosive weapons.

Under the Chemical Weapons Convention (1993), there is a legally binding, world-wide ban on the production, stockpiling, and use of chemical weapons and their precursors. Notwithstanding, large stockpiles thereof continue to exist, usually justified as only a precaution against putative use by an aggressor.

2.
Brief Description of Chemical Weapons
The general and traditional definition of a chemical weapon is a toxic chemical contained in a delivery system, such as a bomb or shell.

The Convention defines chemical weapons much more generally. The term chemical weapon is applied to any toxic chemical or its precursor that can cause death, injury, temporary incapacitation or sensory irritation through its chemical action. Munitions or other delivery devices designed to deliver chemical weapons, whether filled or unfilled, are also considered weapons themselves.

The toxic chemicals that have been used as chemical weapons, or have been developed for use as chemical weapons, can be categorised as choking, blister, blood, or nerve agents. The most well known agents are as follows: choking agents—chlorine and phosgene, blister agents (or vesicants)—mustard and lewisite, blood agents—hydrogen cyanide, nerve agents—sarin, soman, VX.

Of course some toxic chemicals, and/or their precursors, are utilised globally in industry. For example, toxic chemicals are employed as basic raw material, or as anti-neoplastic agents, which prevent the multiplication of cells, or as fumigants, herbicides or insecticides. Such chemicals are considered chemical weapons if they are produced and stockpiled in amounts that exceed requirements for those purposes that are not prohibited under the Convention.

The Convention is designed to ensure that toxic chemicals are only developed and produced for purposes unrelated to chemical weapons. Chemical technology must not be misused, and the OPCW has a mandate to monitor chemical industry to make certain that this is the case. To aid the OPCW in this task, the Convention divides toxic chemicals and precursors that could be used as chemical weapons or that could be used in the manufacture of chemical weapons into three Schedules. Schedule 1 chemicals have been used as chemical weapons in the past and/or have very few or no peaceful uses, and thus pose the most direct threat to the Convention. Schedule 2 chemicals are primarily precursors to Schedule 1 chemicals and most have some industrial uses. Schedule 3 chemicals are produced in large quantities commercially but in some cases were used as chemical warfare agents and can also serve as precursors to Schedule 1 or 2 chemicals. Production facilities of many organic chemicals termed discrete organic chemicals are also subject to declaration requirements and verification activities.

To help facilitate the destruction and verification process, chemical weapons are formally divided into three Categories. Into Category 1 fall Schedule 1 chemical agents and munitions filled with Schedule 1 agents. Category 2 covers munitions filled with other toxic chemicals and any other weaponized chemical agents—other than those in Schedule 1. Unfilled munitions and devices, and any other equipment specifically designed to aid in the deployment of chemical weapons, fall into Category 3. Destruction timelines are set by the Convention for the destruction of all three Categories of chemical weapons.

Chemical Weapon as defined by the CWC
A common conception of a chemical weapon comprises a toxic chemical contained in a delivery system such as a bomb or artillery shell. While technically correct, a definition based on this conception would only cover a small portion of the range of things the CWC prohibits as “chemical weapons”. There are several reasons for the broad CWC definition, which, as described in Fact Sheet 2, includes munitions, precursor chemicals and equipment connected with production and use of chemical weapons. For one thing, CW components—a toxic chemical and delivery system, for example— may be stored separately, each in and of itself less than a fully developed weapon. In the case of binary munitions, a nonlethal chemical may actually be stored within a munition, only to be mixed with a second chemical inserted into the munition shortly before firing, and the toxic product disseminated upon arrival at the target.

The complexity of the chemical weapon definition needed to meet the objectives of the Convention can be seen when considering “dual-use” items and technologies. Many chemicals used widely for peaceful and commercial purposes can also be used as, or applied to the creation of, chemical weapons. To address the potential threat posed by these chemicals, the CWC definition of a chemical weapon had to be as comprehensive as possible.

At the same time, however, care had to be taken not to define chemical weapons in a way that unnecessarily hindered legitimate uses of chemicals and the economic and technological development to which such uses may lead. While providing for the prevention of production or stockpiling of chemical weapons, the definition could not result in restrictions of any State Party’s right to acquire and retain conventional weapons and their associated delivery systems nor the right to produce and use chemicals for peaceful pur-poses. The definition eventually adopted allowed for a balanced approach under which the Convention’s objectives can be met while the rights of States Parties are retained.

To preclude contravention of the treaty’s intent by separation of chemical weapons into component parts, the Convention defines each component of a chemical weapon (CW) as a chemical weapon—whether assembled or not, stored together or separately. Anything specifically designed or intended for use in direct connection with the release of a chemical agent to cause death or harm is itself a chemical weapon. Specifically, the definition is divided into three parts:

The first part of the definition states that all toxic chemicals and their precursors, except when used for purposes permitted by the CWC in specified quantities, are chemical weapons. Toxic chemicals are defined as “any chemical which through its chemical action on life processes can cause death, temporary incapacitation or permanent harm to humans or animals.” Precursors are chemicals involved in production stages for toxic chemicals. Except for very limited application for protection programmes, medical research or other permitted purposes, the production of some toxic chemicals with virtually no legitimate peaceful uses, such as sarin (GB), is banned. Determining whether genuinely dual-use chemicals are chemical weapons is more difficult. For example, chemicals such as chlorine, phosgene and hydrogen cyanide (AC)—all of which were used during World War I as chemical weapons—are also key ingredients in numerous commercial products. To make the determination, toxic dual-use chemicals are subjected tothe so-called general purpose criterion.

According to the general purpose criterion, a toxic or precursor chemical may be defined as a chemical weapon depending on its intended purpose. Put simply, a toxic or precursor chemical is defined as a chemical weapon unless it has been developed, produced, stockpiled or used for purposes not prohibited by the Convention. The definition thus includes any chemical intended for chemical weapons purposes, regardless of whether it is specifically listed in the Convention, its Annexes or the schedules of chemicals. The CWC does not, however, expressly state what “chemical weapons purposes” are. Instead, it lists those purposes that are not prohibited by the Convention. Chemicals intended for purposes other than these are considered chemical weapons.

A basic component of the general purpose criterion is the principle of consistency. A toxic chemical held by a State Party and in agreement with this principle will not only be produced, stockpiled or used for a legitimate purpose, but also will be of a type and quantity appropriate for that purpose.

The second part of the Convention’s definition of a chemical weapon includes any munitions or devices specifically designed to inflict harm or cause death through the release of toxic chemicals. Among these could be mortars, artillery shells, missiles, bombs, mines or spray tanks. In order to be defined as a chemical weapon, however, the items in question would have had to have been designed and built with the intent to release any of the toxic chemicals in the first part of the definition.

Thirdly and lastly, any equipment specifically designed for use “directly in connection” with employment of the munitions and devices of the second part of the definition are identified as chemical weapons. As with the second part, the principle of specificity applies. Thus, only that equipment specifically designed to be used with munitions and devices or toxic chemicals and their precursors falls under the chemical weapons definition.

One other definition of relevance is that of riot control agents (RCAs), the use of which as a method of warfare is prohibited by the CWC. A riot control agent is defined as being “any chemical not listed in a schedule which can produce rapidly in humans sensory irritation or disabling physical effects which disappear within a short time following termination or exposure”. Regarding herbicides, the prohibition of their use as a method of warfare is recognised in the CWC Preamble. However, herbicides are not defined specifically in the Convention and there are no specific declaration or destruction requirements related to them. This does not preclude application of the general purpose criterion to chemicals traditionally considered as herbicides. In other words, if the intended purpose of a toxic chemical is prohibited by the CWC, the chemical shall be considered a chemical weapon.

Also deserving of mention are toxins – toxic chemicals produced by living organisms. Although also considered to be biological weapons, toxins are addressed by the CWC. The development, production and stockpiling of toxins for purposes of warfare are prohibited under the Biological and Toxin Weapons Convention (BTWC). Parties to that treaty that possess toxin weapons agree to destroy them. However, inasmuch as toxins are chemicals themselves and can have chemical weapons applications, they are automatically covered by the definitions listed above for chemical weapons and toxic chemicals. (Two toxins, ricin and saxitoxin, are in fact explicitly listed in Schedule 1.) This is due to the fact that a large number of toxins can be synthesised in laboratories without resorting to the organisms that produce them in nature. Moreover, a number of toxins are also synthetic dual-use chemicals, meaning that under the CWC, at least, amounts needed for legitimate activities are permitted.

Several unresolved issues remain regarding the definition of chemical weapons. One has to do with the status of old chemical weapons. Old chemical weapons fall into two categories: 1) chemical weapons produced before 1925 and 2) chemical weapons produced between 1925 and 1946 “that have deteriorated to such an extent that they can no longer be used as chemical weapons.” Old chemical weapons of the first category may be “destroyed or disposed of” as toxic waste in accordance with the relevant State Party’s national laws after the OPCW Secretariat has confirmed that they were indeed produced before 1925. Those weapons that fall into the second category of old chemical weapons are to be destroyed in accordance with the same conditions as other chemical weapons, though the time limits and the order of destruction can be changed, subject to approval by the Executive Council. Guidelines for determining whether weapons in this category have deteriorated enough to be unusable, however, have yet to be decided, though efforts to do so are ongoing. Categorisation of such weapons therefore remains problematic.

CW Agent Group, Persistency Rate of Action
CW Agent Group
Persistency
Rate of Action
Choking Agents
Chlorine (Cl)
Low
Variable
Phosgene (PG)
Low
Delayed
Diphosgene (DP)
Low
Delayed
Chloropicrin (PS)
Low
Delayed
Blister Agents
Sulfur mustard (H, HD)
Very high
Delayed
Nitrogen mustard (HN)
High
Delayed
Phosgene oxime (CX)
Low
Immediate
Lewisite (L)
High
Rapid
Blood Agents
Hydrogen cyanide (AC)
Low
Rapid
Cyanogen chloride (CK)
Low
Rapid
Arsine (SA)
Low
Delayed
Nerve Agents
Tabun (GA)
High
Very rapid
Sarin (GB)
Low
Very rapid
Soman (GD)
Moderate
Very rapid
Cyclosarin (GE, GF)
Moderate
Very rapid
VX
Very high
Rapid

3.
Chemical weapon, any of several chemical compounds, usually toxic agents, that are intended to kill, injure, or incapacitate enemy personnel. In modern warfare, chemical weapons were first used in World War I (1914–18), during which gas warfare inflicted more than one million of the casualties suffered by combatants in that conflict and killed an estimated 90,000. In the years since then, chemical arms have been employed numerous times, most notably in the Iran-Iraq War (1980–88). The United States and the Soviet Union, during their decades of confrontation in the Cold War (1945–91), built up enormous stockpiles of chemical weapons. The end of the Cold War enabled those former adversaries to agree to ban all chemical weapons of the types that had been developed during World War I (first generation), World War II (second generation), and the Cold War (third generation).

Like nuclear weapons and biological weapons, chemical weapons are often classified as weapons of mass destruction. Under the Chemical Weapons Convention(CWC) of 1993, the use of chemical weapons in war is prohibited, as is all development, production, acquisition, stockpiling, and transfer of such weapons. Nevertheless, while the aim of the CWC is complete elimination of most types of chemical weapons, not all countries have abandoned their chemical warfare capabilities. In particular, some weaker states have pursued chemical weapons programs as deterrents to being attacked by enemies that have either stronger conventional forces or their own weapons of mass destruction, and some regimes have used chemical weapons to threaten especially vulnerable foes outside and even within their own borders.

Furthermore, some individuals and militant organizations have acquired or have sought to acquire chemical weapons in order to attack their enemies or to secure their own ends through terror. The continued threat from chemical weapons has led many states to prepare defenses against them and to exert diplomatic pressure on dissenting or noncompliant states to abide by the CWC.

Types of chemical weapons
Chemical weapons are chemical agents, whether gaseous, liquid, or solid, that are employed because of their direct toxic effects on humans, animals, and plants. They inflict damage when inhaled, absorbed through the skin, or ingested in food or drink. Chemical agents become weapons when they are placed into artillery shells, land mines, aerial bombs, missile warheads, mortar shells, grenades, spray tanks, or any other means of delivering the agents to designated targets.

Not all poisonous substances are considered suitable for weaponization, or use as chemical weapons. Thousands of such chemical compounds exist, but only a few dozen have been used as chemical warfare agents since 1900. The compounds of most utility must be highly toxic but not too difficult to handle. Furthermore, the chemical must be able to withstand the heat developed when delivered in a bursting shell, bomb, mine, or warhead. Finally, it must be resistant to water and oxygen in the atmosphere in order to be effective when dispersed.

Since World War I, several types of chemical agents have been developed into weapons. These include choking agents, blister agents, blood agents, nerve agents, incapacitants, riot-control agents, and herbicides.

Choking agents were employed first by the German army and later by the Allied forces in World War I. The first massive use of chemical weapons in that conflict came when the Germans released chlorine gas from thousands of cylinders along a 6-km (4-mile) front at Ypres, Belgium, on April 22, 1915, creating a wind-borne chemical cloud that opened a major breach in the lines of the unprepared French and Algerian units. The Germans were not prepared to exploit the opening, which gave the French and Algerians time to rush reinforcements into the line. Eventually both sides mastered the new techniques of using choking agents such as chlorine,phosgene, diphosgene, chloropicrin, ethyldichlorasine, and perfluoroisoboxylene and launched numerous attacks—though without any militarily significant breakthroughs once each side had introduced the first crude gas masks and other protective measures. Phosgene was responsible for roughly 80 percent of all deaths caused by chemical arms in World War I.

Choking agents are delivered as gas clouds to the target area, where individuals become casualties through inhalation of the vapour. The toxic agent triggers the immune system, causing fluids to build up in the lungs, which can cause death through asphyxiation or oxygen deficiency if the lungs are badly damaged. The effect of the chemical agent, once an individual is exposed to the vapour, may be immediate or can take up to three hours. A good protective gas mask is the best defense against choking agents.

Blister agents were also developed and deployed in World War I. The primary form of blister agent used in that conflict was sulfur mustard, popularly known as mustard gas. Casualties were inflicted when personnel were attacked and exposed to blister agents like sulfur mustard or lewisite. Delivered in liquid or vapour form, such weapons burn the skin, eyes, windpipe, and lungs. The physical results, depending on level of exposure, might be immediate or might appear after several hours. Although lethal in high concentrations, blister agents seldom kill. Modern blister agents include sulfur mustard, nitrogen mustard, phosgene oxime, phenyldichlorarsine, and lewisite. Protection against blister agents requires an effective gas mask and protective overgarments.

Blood agents, such as hydrogen cyanide or cyanogen chloride, are designed to be delivered to the targeted area in the form of a vapour. When inhaled, these agents prevent the transfer of oxygen to the cells, causing the body to asphyxiate. Such chemicals block the enzyme that is necessary for aerobic metabolism, thereby denying oxygen to the red blood cells, which has an immediate effect similar to that of carbon monoxide. Cyanogen inhibits the proper utilization of oxygen within the blood cells, thereby “starving” and damaging the heart. The best defense against blood agents is an effective gas mask.

The most lethal and important chemical weapons contain nerve agents, which affect the transmission of impulses through the nervous system. A single drop on the skin or inhaled into the lungs can cause the brain centres controlling respiration to shut down and muscles, including the heart and diaphragm, to become paralyzed. Poisoning by nerve agents causes intense sweating, filling of the bronchial passages with mucus, dimming of vision, uncontrollable vomiting and defecation, convulsions, and finally paralysis and respiratory failure. Death results from asphyxia, generally within a few minutes of respiratory exposure or within hours if exposure was through a liquid nerve agent on the skin. Defense against nerve agents requires a skin tight gas mask and special protective overgarments.

In the mid-1930s chemists working for the German chemical corporation IG Farben developed the first organophosphorus compound with an extremely high toxicity; this became the nerve agent known as tabun (GA). As much as 12,000 tons was produced for the German army in World War II, although it was never used. Another nerve agent, sarin (GB), was first produced in 1938, and a third, soman (GD), was introduced in 1944; both were also invented in Germany. These three German nerve agents, the G-series (for German) in U.S. nomenclature, were all seized in large quantities by the Allies at the end of World War II. After the war the United States, the Soviet Union, and a number of other states also produced these and other nerve agents as weapons.

VX, the most famous of the so-called V-series of persistent nerve agents (and also the deadliest known nerve agent; V is for venom), was developed by chemists at a British government facility in 1952. Britain renounced all chemical and biological weapons in 1956 but traded information on the production of VX with the United States in exchange for technical information on the production of thermonuclear bombs. In 1961 the United States began large-scale production of VX. The only other countries believed to have built up VX arsenals were the Soviet Union, France, and Syria. Following the signing of the CWC in 1993, the United States and Russia began the elimination of their chemical weapons stocks, with a goal of finishing the process by 2012; neither country trains its forces with such weapons at present.

Defense against nerve agents requires a skintight mask and effective protective overgarments.

A good deal of work has been done on chemicals that can incapacitate, disorient, or paralyze opponents. Experiments have been conducted on a number ofhallucinogenic drug compounds—for instance, 3-quinuclidinyl benzilate (BZ), LSD(lysergic acid diethylamide), mescaline, and methaqualone—and at one time the U.S. Army fielded BZ weapons. Those chemical weapons are designed not to kill; however, even incapacitants can cause permanent injury or loss of life if employed in high dosages or if they cause accidents. BZ or LSD may attack the nervous system and derange a victim’s mental processes, causing, for example, hallucinations or psychotic thinking. Other incapacitants might cause victims to sleep or to be slow to respond.

Tear gas and vomiting agents have been produced to control riots and unruly crowds. Commonly used tear gases are chloracetophenone (CN), chloropicrin (PS), dibenz(b,f)(1,4)oxazepine (CR), and o-chlorobenzylidenemalononitrile (CS). CN, the principal component of the aerosol agent Mace, affects chiefly the eyes. PS and CS are stronger irritants that can burn the skin, eyes, and respiratory tract. Such riot-control agents are banned by the CWC if used as “a method of warfare” but are allowed for domestic police enforcement.

Although the United States signed and ratified the CWC, it has reserved the right to use riot-control agents in certain other situations, including counterterrorist and hostage-rescue operations, noncombatant rescue operations outside war zones, peacekeeping operations where the receiving state has authorized the use of force, and military operations against non-state actors initiating armed conflict.

Herbicides are not banned by the CWC unless they are used as “a method of warfare.” However, not all state parties to the CWC consider herbicides to be chemical weapons, and those states therefore do not recognize their use to be banned by the treaty.

States can attach reservations if they do not directly undermine the essential purposes of the treaty. In this case it is less essential to regulate non lethal herbicides than the more dangerous chemical weapons.

Herbicides can be used to destroy enemy crops and foliage cover. For example,Agent Orange was used extensively by U.S. forces between 1962 and 1971, during the Vietnam War, as a defoliant to deny cover in the jungle to the Viet Cong and to North Vietnamese forces. Other herbicides, such as paraquat, Agent White (picloram and 2,4-D), and Agent Blue (dimethyl arsenic acid), have also been produced to act as chemical weapons.

Properties of chemical weapons
Chemical weapons can be categorized by their physical characteristics, such as lethality, persistency, mode of action on the human body, and physical state (i.e., gas, liquid, or solid) when being delivered.

Some chemical agents are highly lethal. For example, nerve agents such as sarin, tabun, soman, and VX can kill almost instantly; a few droplets absorbed through the skin can paralyze and cause death in minutes. At the other end of the lethality spectrum are chemical agents such as tear gas that only act as irritants or incapacitants and are unlikely to kill unless used in very large quantities.

Chemical agents also have varied levels of persistency. Some evaporate in minutes or hours and lose their effect rapidly. For example, sarin is a lethal but non persistent nerve agent. By contrast, VX can persist for days or weeks in lethal form. This difference in persistency may lead to a different strategic or tactical use of each agent in wartime. A military force may use persistent chemical weapons, such as VX or mustard, to neutralize an air base, seaport, or key staging area for an extended period in order to deny its use to the adversary. On the other hand, nonpersistent chemical weapons, such as sarin, more likely would be employed where only a temporary effect is sought. For example, nonpersistent chemical weapons could be used to breach an enemy line at a point that one’s own forces might want to pass through or occupy after the effects have dissipated.

Some poison gases, such as chlorine and hydrogen cyanide, enter the victim’s lungs during inhalation. On the other hand, nerve agent droplets might enter through the skin into the bloodstream and nervous system. Still other chemicals can be mixed with food in order to poison enemy personnel when they take their meals.

Finally, chemical weapons might be delivered via aerosols, mortars, artillery shells, missile warheads, mines, or aerial bombs. Most of these have all the ingredients premixed, but newer chemical arms may be so-called binary weapons in which the ingredients are mixed in flight while the weapon is being delivered. Binary weapons are safer and easier to store and handle than more-traditional chemical arms.

Defense against chemical weapons
On the battlefield
Since World War I the military organizations of all the great powers have acquired defensive equipment to cope with emerging offensive chemical weapons. The first and most important line of defense against chemical agents is the individual protection provided by gas masks and protective clothing and the collective protection of combat vehicles and mobile or fixed shelters. Filters for masks and shelters contain specially treated activated charcoal, to remove vapours, and paper membranes or other materials, to remove particles. Such filters typically can reduce the concentration of chemical agents by a factor of at least 100,000. Masks can be donned in less than 10 seconds and can be worn for long periods, even in sleep. Modern protective overgarments are made of fabric containing activated charcoal or other adsorptive forms of carbon. A complete suit typically weighs about 2 kg (4.4 pounds). The fabric can breathe and pass water-vapour perspiration. In warm weather, periods of heavy exertion in full protective gear would have to be limited in order to avoid heat stress. Also, removing such gear in a contaminated environment would raise the risk of becoming a casualty or fatality, and so gear must be removed within toxic-free shelters after following decontamination procedures at the shelter entrance.

Chemical detectors have been developed to help identify levels and places of contamination. These include chemically treated litmus paper used to determine the presence of chemical agents. Other sensors may include handheld assays, vehicles equipped with scoops and laboratory analysis tools, and both point and standoff sensors. Automatic field alarm systems are employed by some military forces to alert personnel to the presence of chemical agents.

Well-equipped troops are supplied with hypodermic needles filled with antidotes to be administered in the event of toxic poisoning from nerve agents. For example,atropine shots can be injected to fight the effects of nerve gas exposures, and different medicines are available to treat casualties.

A number of methods have been found useful in decontaminating areas and people covered with chemical agents, including spraying with super tropical bleach(chlorinated lime) or washing contaminated surfaces or garments with warm soapy water. The challenge is finding and using a decontamination solution that is strong enough to neutralize the chemical agent without damaging the equipment or harming the personnel.

In some military forces, modular field hospitals have been developed that are stocked with resuscitation devices for respiratory support and other necessary equipment, decontamination solutions, and staff trained to decontaminate chemical warfare casualties. Collective protective shelters, complete with filters for airflow systems, have been provided to shield personnel in an otherwise contaminated area. Such shelters can provide a toxic-free area for personnel to change clothes, get medical attention, sleep, and take care of bodily functions with less danger of exposure to lethal chemicals.

Chemical agents used against unprotected forces can cause high casualties, fear, and confusion. Thus, personnel facing adversaries equipped with chemical weapons must be trained to don individual protective equipment, seek cover in collective protection shelters, avoid contaminated areas, and rapidly decontaminate personnel and equipment that have been exposed. However, such measures, while necessary to protect against chemical attacks, may expose protected forces to greater casualties from conventional weapons fire and lead to a loss of conventional combat effectiveness. Indeed, exercises have shown that conventional combat effectiveness can be decreased by 25 percent or more for military forces compelled to operate in masks, protective overgarments, special gloves, and boots. This is especially true if temperatures are high and forces are required to stay sealed in their gear for many hours or days without relief. Prolonged wearing of individual protective equipment can lead to stress, fatigue, disorientation, confusion, frustration, and irritability. Also, heat can build up and lead to dehydration. Thus, there is generally a trade-off between protecting one’s force through chemical-protection gear and maintaining conventional fighting effectiveness.

In civilian defense
While most military forces have at least some defense against chemical attack, this is not the case for most civilian populations, which typically have no individual protective equipment (masks, overgarments, boots, or gloves) or collective protection shelters. One notable exception is Israel, which has been at war numerous times since its independence in 1948. Israeli citizens are assigned their own gas masks, and new buildings in Israel must contain a reinforced shelter. Israel also conducts civil defense exercises on a regular basis in order to prepare its citizens for attack.

A further problem for almost every country is the presence in most urban centres of storage or manufacturing facilities that contain toxic industrial chemicals and other toxic materials. A conventional attack on such a site would be the functional equivalent of a chemical weapons attack. Most countries do not have adequate security around such areas.

One response to the threat of a chemical weapons attack on civilian society has been the creation of active, well-trained emergency response teams that know how to identify chemical agents, decontaminate areas and people exposed to chemical weapons, and coordinate rescue operations. Cognizant of the growing risk posed by weapons of mass destruction (WMD), the United States in 1998 authorized the creation of 10 National Guard WMD Civil Support Teams (WMD-CST) within its territory; each team was organized, trained, and equipped to handle chemical emergencies in support of local police, firefighters, medical personnel, and other first responders. In subsequent years, dozens of new WMD-CST were authorized, with plans for eventually certifying units for every state and some U.S. protectorates. In addition, the U.S. Centers for Disease Control and Prevention maintains the Strategic National Stockpile, which contains medical supplies and equipment positioned around the country to provide medical help in emergencies, including a chemical weapons attack.

Chemical weapons in history
Antiquity
The use of chemical weapons dates back to antiquity, when warring forces frequently poisoned the water supplies of their adversaries. For example, the Athenians poisoned the wells of their rivals as early as 600 bce, and the Spartans, their chief antagonists, in turn hurled burning sulfur pitch over the walls of Athens in 423 bce. In 673 ce the Byzantines defended Constantinople from the Saracen navy by igniting chemicals (known as Greek fire) floating in the sea. During the Middle Ages,Genghis Khan’s Mongolian forces employed chemical warfare when they catapulted burning pitch and sulfur into cities they besieged.

Chemical weapons did not become true weapons of mass destruction (WMD) until they were introduced in their modern form in World War I (1914–18). The German army initiated modern chemical warfare by launching a chlorine attack at Ypres, Belgium, on April 22, 1915, killing 5,000 French and Algerian troops and momentarily breaching their lines of defense. German use of gas and mustard was soon countered by similar tactics from the Allies. By war’s end, both sides had used massive quantities of chemical weapons, causing an estimated 1,300,000 casualties, including 91,000 fatalities. The Russian army suffered about 500,000 of these casualties, and the British had 180,000 wounded or killed by chemical arms. One-third of all U.S. casualties in World War I were from mustard and other chemical gases, roughly the ratio for all participants combined. By the war’s end, all the great powers involved had developed not only offensive chemical arms but also crude gas masks and protective overgarments to defend themselves against chemical weapon attacks. Altogether, the warring states employed more than two dozen different chemical agents during World War I, including mustard gas, which caused perhaps as many as 90 percent of all chemical casualties (though very few of these casualties were fatal) from that conflict.

Other choking gas agents used included chlorine, phosgene, diphosgene, andchloropicrin. The blood agents included hydrogen cyanide, cyanogen, chlorine, and cyanogen bromide. Arsenic-laced sneeze agents were also used, as were tear gases like ethyl bromoacetate, bromoacetone, and bromobenzyl cyanide.

The horrific casualties of World War I helped persuade many world leaders of the need to ban the use of chemical weapons. A number of proposals were made during the 1920s, and at the 1925 Geneva Conference for the Supervision of the International Traffic in Arms (see Geneva Conventions) a protocol was approved and signed by most of the world’s states. The 1925 Geneva Protocol made it illegal to employ chemical or biological weapons, though the ban extended only to those who signed the treaty. The Geneva Protocol did not ban the production, acquisition, stockpiling, or transfer of such arms, and, critically, it did not contain any verification procedure to ensure compliance.

Despite the popular reaction against this form of warfare and the international agreement banning the use of chemical weapons, chemical arms were used a number of times in the years between the two World Wars. For example, chemical weapons were employed by British forces in the Russian Civil War (1919), Spanish forces in Morocco (1923–26), Italian forces in Libya (1930), Soviet troops in Xinjiang (1934), and Italian forces in Ethiopia (1935–40).

During the Sino-Japanese War (1937–45), Japanese forces employed riot-control agents, phosgene, hydrogen cyanide, lewisite, and mustard agents extensively against Chinese targets. There is no record of chemical warfare among World War II belligerents other than that of the Japanese. The Axis forces in Europe and the Allied forces adopted no-first-use policies, though each side was ready to respond in kind if the other acted first. Indeed, all the major powers developed extensive chemical warfare capabilities as a deterrent to their use.

After World War II, chemical weapons were employed on a number of occasions. Egyptian military forces, participating in Yemen’s civil war between royalists and republicans, used chemical weapons, such as nerve and mustard agents, in 1963, 1965, and 1967. During the Soviet intervention into the Afghan War (1978–92), chemical arms, such as mustard and incapacitating agents, were used against the mujahideen rebels. In 1987 Libya used mustard munitions against rebels in Chad.

The most extensive post-World War II use of chemical weapons occurred during theIran-Iraq War (1980–88), in which Iraq used the nerve agents sarin and tabun, as well as riot-control agents and blister agents like sulfur mustard, resulting in tens of thousands of Iranian casualties. Chemical weapons enabled Iraq to avoid defeat, though not obtain victory, against the more numerous Iranian forces. In response to Iraq’s use of chemical weapons, Iran made efforts to develop chemical weapons and may have used them against Iraq, a contention that Iran has denied. Furthermore, Iran claims to have ended its program when it signed (1993) and ratified (1997) the CWC. Iraq also used chemical weapons (thought to be hydrogen cyanide, sarin, or sulfur mustard gas) against Iraqi Kurds who were considered unfriendly to the regime of Ṣaddām Ḥussein. The most notorious such attack was the killing of 5,000 Kurds, including many civilians, in the city of Halabjah in 1988.

Banning chemical weapons
During World War I, Germany, France, the United Kingdom, and Russia developed a wide array of chemical arms, including choking, blister, blood, and irritant agents. During World War II, Germany developed nerve agents such as toman, soman, and sarin. After World War II, the British invented VX, a more persistent nerve agent that eventually was deployed by the United States and the Soviet Union.

The World War I chemical agents are referred to as first-generation weapons, the World War II nerve agents are called second-generation weapons, and Cold War chemical agents (such as VX) are known as third-generation weapons. Part of the U.S. arsenal during the Cold War also included CS, a riot-control agent, and BZ, an incapacitant, as well as sarin and VX. The Soviet Union also had a complete chemical weapons arsenal, including “classic” agents from the first, second, and third generation, all of which are now banned by the CWC.

According to some interpretations, the CWC does not cover fourth-generation chemical weapons, so-called nontraditional agents (NTAs), such as some of the binary nerve agents known as “novichoks.” There is evidence that Russia inherited NTAs from the former Soviet arsenals.

Negotiations to secure a multilateral chemical disarmament treaty began in the early 1960s at the United Nations. Issues that separated the sides were the kinds of verification procedures for checking on treaty compliance, whether all or part of the weapons stocks should be dismantled, and the sanctions to be levied against violators. Real progress did not take place until the period 1986–91, when relations between the Soviet Union and the United States improved after the rise to power of Soviet leader Mikhail Gorbachev. With the dissolution first of the Warsaw Pact in 1989 and then of the Soviet Union itself in 1991, a real convergence of political and diplomatic views was made possible. In 1990 bilateral reductions and limits were negotiated in which each state agreed to a limit of 5,000 tons of chemical agents in its chemical weapons arsenal. By 1993 the former enemies were finally willing to agree to a robust on-site verification regime featuring challenge inspections of undeclared sites, a total ban on chemical weapons, and a total dismantling of their stockpiles.

The United Nations Conference on Disarmament adopted the Chemical Weapons Convention (CWC) on September 3, 1992, and the treaty was opened to signature by all states on January 13, 1993. The CWC entered into force on April 29, 1997, 180 days after the deposit of the 65th instrument of ratification (such as passage by a national assembly).

At the time that the United States and Russia signed the CWC, Russia declared 40,000 metric tons of chemical weapon agents and the United States 30,000 metric tons—stockpiles that dwarfed the combined arsenals of the rest of the world. All were to be destroyed, according to CWC guidelines, by the year 2012. In the early 1990s the U.S.Cooperative Threat Reduction Program was launched to help the states of the former Soviet Union demilitarize their chemical, biological, and nuclear facilities and arsenals and to employ the scientists and technicians from those programs in other, more productive peacetime activities. Despite such efforts, both countries fell behind schedule and announced that they would not be able to meet the 2012 deadline. The United States was on a trajectory to finish the job by 2021, and Russia declared it would finish its parallel effort in 2015.

All other signatories to the CWC reportedly eliminated their stockpiles, though some states subsequently declared stockpiles that they had previously denied existed.Libya is a case in point. In 2004 Libya decided to part with its chemical and nuclear weapons programs and invited the United States and the United Kingdom to help it dismantle both. Significant progress was made in destroying mustard gas and precursors to other chemical weapons before Libya was paralyzed by civil strife in 2011.

United Nations inspection teams entered Iraq after the Persian Gulf War ended in early 1991. Some 40,000 Iraqi chemical weapons were then found and destroyed, and a bunker containing thousands of possibly war-damaged weapons was sealed. After the U.S. invasion of Iraq in 2003, no major stockpile of chemical weapons or dedicated facilities for their manufacture were found in Iraq, contrary to the United States’ contention before the invasion. A very few chemical rounds were found among arms storage sites in Iraq, but they were thought to be left over from the Iran-Iraq War. Upon becoming a signatory to the CWC in 2009, Iraq acknowledged its obligation to dispose of its remaining damaged weapons—a complicated and dangerous effort that would take years to complete.

Proliferation and detection of chemical weapons programs
Chemical weapons proliferation
The Chemical Weapons Convention has resulted in the elimination of huge stocks of chemical weapons once held by the principal adversaries of the Cold War. Nevertheless, intelligence services of various countries have reported an increase in the number of states with active chemical weapons programs. Some 20 countries were reportedly working on chemical weapons at the beginning of the 21st century, as opposed to only five such states in the 1960s.

Regimes seek to acquire chemical weapons for a number of reasons. First, they may decide that having such lethal weapons will allow them to “level the playing field” against an adversary with a stronger conventional military force. Second, they may wish to deter attacks by rivals, holding them at bay with the threat of a chemical weapons strike in retaliation. Having one type of weapon of mass destruction might deter the use of the same or another type by a rival. Third, chemical weapons, like other mass-casualty weapons such as nuclear and biological arms, may be designed for regime survival in the event that a country is losing a conventional conflict. In this case, possession of chemical warfare capabilities might provide endgame bargaining leverage to establish better terms. For example, in the Iran-Iraq War, Iraq’s use of Scud ballistic missiles (with the potential to deliver chemical warheads) against Iranian cities caused major panic in those metropolitan centres and helped persuade the Iranian government to agree to a cease-fire sought by Iraq. Fourth, chemicals can be used as terror weapons to lower enemy morale and weaken support for the rival’s war effort. Finally, chemical weapons can be used against unprotected rebellious groups inside a country, as Ṣaddām Ḥussein illustrated in his chemical weapon strikes against the Kurdish city of Halabjah.

Detection of clandestine programs
Although most states have joined the CWC, some member states may still cheat and deploy a clandestine chemical weapons program. Inspectors from the Organisation for the Prohibition of Chemical Weapons (OPCW; the body that administers the CWC) number only in the hundreds, whereas the estimated number of chemical plants that might be inspected exceed many thousands. Therefore, only a small fraction of sites can be inspected every year. Still other states, notably Israel and some of its Arab rivals, refuse to ratify the various nuclear, biological, and chemical nonproliferation pacts until their rivals eliminate their own (undeclared) arsenals and join the respective arms-control treaty regimes.

This leads to the question of how a clandestine chemical weapons program can be detected and measured. Using technical means, human intelligence, and on-site inspections, chemical weapons program signatures can be monitored when searching for a hidden cache of weapons or a production process. These signatures include purchases of unique combinations of chemical precursors and equipment, the presence of equipment for chemical weaponization, and the presence of chemical warfare defensive gear in military units. Other signatures are the discovery of trace amounts of chemical warfare agents or chemical weapons degradation products at a production site or in a plant’s waste products. Finally, signatures may be the presence of storage bunkers, related manufacturing facilities needed for chemical weaponization, or even the presence of a chemical plant with abnormal input-output flows of materials. Nevertheless, detection of clandestine chemical weapons, banned by the CWC or otherwise, is a difficult challenge, since chemical weapons production can be embedded in commercial chemical production plants and evidence can be eliminated in a short period prior to permitting inspectors onto a site—if they are allowed on at all.

The Australia Group is a standing diplomatic conference made up of representatives from states dedicated to restraining the proliferation of key materials and technologies that could be used to produce chemical or biological weapons. Since its formation in 1985, members of the organization have exchanged information and cooperated with one another to control such exports to suspect buyers. The Australia Group is a strictly voluntary and informal export control regime with no formal guidelines, charter, or constitution.

Chemical weapons and terrorism
Until the 1990s, terrorists had rarely possessed or employed chemical weapons. However, several states that have sponsored terrorism have also possessed chemical weapons—Libya, Iran, and Iraq—and there is a concern that they and groups they sponsor might use chemical weapons in the future.

An example of an organization that learned to produce and use chemical weapons is the AUM Shinrikyo sect in Japan, members of which used sarin nerve agent to kill 12 people and injure more than 1,000 in a March 1995 chemical weapons attack inside the Tokyo subway system. Members of this same group had killed seven and injured more than 300 in a June 1994 attack in Matsumoto, Japan. They also assassinated one opponent using VX nerve agent in Osaka and injured another by the same means in Tokyo in early 1995. Finally, in May and July 1995, members of the AUM Shinrikyo used hydrogen cyanide in two follow-up strikes in the Tokyo subway that injured four persons. Altogether, the several attacks with three different types of chemical weapons killed 20 people, injured some 1,300, and sent more than 5,600 to the hospital for examination. Casualties would likely have been much higher had the Japanese police not intervened when they did.

Al-Qaeda leaders have shown an interest in acquiring and employing chemical weapons, as indicated by experiments testing the use of hydrogen cyanide on animals in al-Qaeda camps in Afghanistan prior to the September 11 attacks on the United States in 2001. In addition to other documents showing ongoing research on chemical weapons, al-Qaeda planned and then aborted a chemical attack on theNew York City subway system in 2005. Furthermore, al-Qaeda of Mesopotamia (also known as al-Qaeda of Iraq) initiated chlorine attacks in Iraq in 2007. It is believed by some Western analysts that al-Qaeda leaders would not hesitate to use any chemical, biological, radiological, or nuclear weapons that they might acquire. For example, al-Qaeda of Mesopotamia openly issued a public invitation for Muslim chemists, biologists, and physicists to join their cause.

Unfortunately, a substantial amount of information on how to manufacture chemical weapons already exists in the public domain, particularly on the Internet, which is within reach of individuals and groups worldwide.

4.
Types of Chemical Weapons
Since their first appearance during World War I, chemical weapons have seldom been used.

But since the Sept. 11 attacks on America, the threat of chemical weapons looms larger in many minds.

Like nuclear weapons, chemicals are considered weapons of mass destruction. Most armies don't use them — while preparing to protect themselves against them — and military brass worldwide have for the most part kept them out of warfighting doctrine.

Still, the technology to produce such weapons is widely available — there are tens of thousands of chemical manufacturing plants in the United States and Europe, alone.

In the spring of 1997, the U.S. Senate ratified a global chemical weapons ban treaty signed by more than 80 other nations.

There are numerous kinds of chemical weapons, and their effectiveness is controlled by a number of factors, including age, purity, weather conditions, wind direction, means of dissemination, and other factors. Some of the weapons can take hours to kill, and people exposed can sometimes survive, given proper treatment and antidotes.

Chemicals can be dispensed as liquids, vapors, gases and aerosols. They include nerve agents, blister agents and choking agents, all of which can be taken in through the eyes, lungs or skin, and blood agents, which are inhaled. They are generally dispensed as aerosols, liquids or vapors.

The symptoms, depending on the agent, can range from near immediate failure of the respiratory or nervous system, or lead to skin irritation, headaches, heart palpitations and respiratory difficulty, vomiting and convulsions.

The most common chemical agents include:
Sarin is a colorless, odorless nerve gas the Aum Shinrikyo cult used on a Tokyo subway in March 1995, killing 12 people and injuring more than 5,500. Sarin, which has been produced by the United States, Russia (and the Soviet Union) and Iraq, is a member of the organophosphate chemical family, as are many modern pesticides. It can be difficult to mix properly and safely, and can also be highly unstable.

Soman: With Sarin and another chemical weapon known as Lewisite — a blistering agent — the nerve agent Soman is said to have made up much of the former Soviet Union's chemical arsenal. It is considered a volatile substance effective mainly through inhalation.

VX, or O-ethyl S-diisopropylaminomethyl methylphosphonothiolate, is brownish in liquid form, and its vapors are odorless. The United States began producing VX in April 1961, but its composition was not widely known for another decade.

VX agents are among the most toxic substances known. Mere droplets can kill. It can remain on material, equipment and terrain for long periods. Uptake is mainly through the skin but also through inhalation of the substance as a gas or aerosol.

Tabun, invented by a German chemist, Gerhard Schrader, in the mid-1930s, is colorless or brownish as a liquid, and odorless as a vapor. Schrader worked for IG Farben, a company that later used slave labor from the Birkenau concentration camp to produce its products. Another one of Farben's inventions was Zyklon-B, a type of hydrogen cyanide used by the Nazis to gas victims in those same camps during World War II. Tabun, also an organophosphate like many pesticides, is considered among the easiest of nerve gases to manufacture, even in the non-industrialized world.

Hydrogen cyanide is a commercially produced "blood agent" used in plastic and organic chemical products in many parts of the world. It is a colorless vapor at normal temperatures with a smell likened to bitter almonds.There is no confirmed information on this substance being used in chemical warfare. However, it has been reported that hydrogen cyanide was used by Iraq in the war against Iran and against the Kurds in northern Iraq during the 1980s. Hydrogen cyanide has high toxicity and in sufficient concentrations rapidly leads to death.

Mustard Agents
First used toward the end of World War I, mustard agents — among the most commonly produced chemical weapons by those nations that have had them — cause severe eye and lung damage. They are often called "blister agents" since their injuries usually resemble burns or blisters. They United States, Germany, Russia and Iraq are all said to have produced mustard agents during the 20th century.

Iraq's Saddam Hussein is reported to have authorized their use (along with cyanide) against Iranian soldiers and Kurdish civilians in the Iran-Iraq war. They are easy to make, and earned their name not from how they are made but from their smell, a rotten mustard or onion odor.

No comments:

Post a Comment